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Abstract. Markov chain Monte Carlo (MCMC) requires only the ability to evaluate the likelihood, making it a
common technique for inference in complex models. However, it can have a slow mixing rate, requir-
ing the generation of many samples to obtain good estimates and an overall high computational cost.
FLARE MCMC is a multi-fidelity layered MCMC method that exploits lower-fidelity approximations
of the true likelihood calculation to improve mixing and leads to overall faster performance. Such
lower-fidelity likelihoods are commonly available in scientific and engineering applications where the
model involves a simulation whose resolution or accuracy can be tuned. Our technique uses recur-
sive, layered chains with simple layer tuning; it does not require the likelihood to take any form or
have any particular internal mathematical structure. We demonstrate experimentally that FLARE
MCMC achieves larger effective sample sizes for the same computational time across different scien-
tific domains including hydrology and cosmology.
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1. Introduction. Markov chain Monte Carlo (MCMC) is a workhorse of scientific and
engineering computation. Most frequently, it is employed to compute the posterior distribution
of model parameters, based on observations. The calculated distributions (as represented by
samples) give estimates that can be used in calibration and uncertainty quantification to aid
in the generation of new scientific experiments, clarify the observability of the model, and
resolve scientific theories.

Among the many MCMC algorithms, Metropolis-Hastings MCMC (MH-MCMC) is pop-
ular because of its ability to sample from almost any distribution while requiring only the
ability to evaluate the model’s likelihood given a parameter setting. Yet, this is also its weak-
ness, as it has no additional knowledge of the problem setting to guide its sampling effectively.
Therefore, its mixing time (speed of generating effectively new samples) can be slow and the
overall algorithm computationally burdensome.

Methods such as Hamiltonian Monte Carlo and its variants [17, 47, 36] speed up mixing
by adding auxiliary momentum variables, allowing longer steps to reduce correlations between
consecutive samples. Such methods require computing the gradient of the log target distri-
bution with respect to the parameters, something that could be prohibitively expensive when
the distribution is evaluated through lengthy simulation code. For instance, the cosmological
simulation we use in our experimental results that aims to approximate the posterior density
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conditioned on the galaxy power spectrum from SDSS-III Baryon Oscillation Spectroscopic
Survey (BOSS) Data [13, 4] cannot be modified to produce gradients. Due to the complexity
and non-differentiability of the forward cosmological simulation, gradients with respect to the
model parameters are not available. Therefore, methods like auto-differentiation cannot be
applied, nor is there an analytic form for the gradients, prohibiting the use of gradient-based
inference methods.

FLARE MCMC speeds up the mixing time of MH-MCMC by exploiting lower-fidelity
models of the same problem. Many engineering or scientific computational models can be
run at multiple fidelities. FLARE MCMC exploits a set of computationally cheaper posterior
calculations, each an approximation of the true posterior. Many posteriors involve solving a
PDE, ODE, or integral. For these, coarsening the spatial or temporal grid leads to cheaper
approximations. For those with constraint or optimization solvers, reducing the solvers’ tol-
erances or maximum number of iterations can similarly lead to cheaper approximations. We
further show a physics example where the underlying simulation can be coarsened by reducing
the number of representative particles.

By recursively employing MCMC chains, we can use the coarser resolution models to
guide the higher resolution MCMC chain. The result is a sampler for the target model that
converges faster and generates more effective samples per computation time, even considering
the extra time necessary to employ the lower-fidelity computations.

2. Background. Markov chain Monte Carlo is a class of algorithms designed to sample
from a complicated target distribution by constructing an easy-to-simulate Markov chain such
that the stationary distribution of the Markov chain is the target distribution. Commonly,
this target distribution is the posterior distribution of a set of parameters, conditioned on
observations. Let D be the observations and θ ∈ Θ ⊂ RR be the parameters. Assuming a
prior distribution on the parameters p(θ), the target posterior distribution of interest, π(θ | D),
is obtained through Bayes’ theorem:

(2.1) π(θ | D) =
L(D | θ)p(θ)

p(D)
∝ L(D | θ)p(θ)

where L(D | θ) is the likelihood of the data, which in many scientific applications requires
a lengthy simulation to evaluate. We only require the ability to evaluate π(θ | D) up to a
constant of proportionality, and therefore the denominator of p(D) is safely ignored. That
π(θ | D) is a conditional distribution is largely irrelevant for MCMC, so we will just let
π(θ) denote the distribution of interest (equal to π(θ | D) if the underlying distribution is a
posterior, but it could be any distribution over θ).

2.1. Metropolis-Hastings MCMC. We begin by focusing on the Metropolis-Hastings
method for Markov Chain Monte Carlo (MH-MCMC) introduced by Hastings (1970) [30].
The (i+1)th sample, θi+1, is generated based on the previous sample in the chain, θi, in a
two-step process. First, a proposed next state, θ̃i is generated from a proposal distribution,
q(θ̃i|θi). Then, θ̃i is either accepted or rejected as θi+1 according to a carefully constructed
acceptance probability. If accepted, θi+1 = θ̃i, otherwise θi+1 = θi. Often, a normal distri-
bution centered at θi is used as the proposal distribution q(θ̃i|θi), but almost any proposal
distribution can be used, subject to mild conditions (for instance, that q(θ̃i|θi) is positive
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everywhere). With a chosen q(θ̃i|θi), the acceptance probability, A, for the transition θi� θ̃i

is

(2.2) A(θi� θ̃i) = min(1, r(θi� θ̃i))

where

(2.3) r(θi� θ̃i) =
π(θ̃i)

π(θi)

q(θi|θ̃i)
q(θ̃i|θi)

.

Although the standard Metropolis-Hastings MCMC algorithm can be an easy way to sam-
ple from a posterior distribution, it requires sufficient samples to be an effective approximation
of the posterior distribution. When the chain is slow to mix (due to a less-than-optimal pro-
posal distribution), consecutive samples are highly dependent and more samples must be taken
to achieve a set representative of the true distribution. When the evaluation of π(θi) (nec-
essary for the calculation of Equation 2.3) is computationally expensive, this is particularly
problematic.

2.2. Related Work. Our goal of accelerating MCMC sampling is shared by a large body
of work. These approaches involve methods that couple chains (like simulated tempering),
methods that aim to reduce the variance of estimators for a target using cheap approximations
from multiple fidelities (like MLMC), and methods that use cheap models to build MCMC
proposals.

Like FLAREMCMC, methods such as simulated tempering and coupled MCMC [57, 46, 5]
use multiple chains. Samples are accepted or rejected by evaluating the energy of the process
and adjusting the temperature of the model. Two chains are run in parallel at different
temperatures, and the system swaps between different temperatures. Reversible jump MCMC
[23, 3] also jumps between chains (of different dimensions). While FLARE MCMC shares
the notion of multiple chains, because it solves a different problem (to take advantage of
simulations that are orders of magnitude cheaper to evaluate), the resulting structure is very
different. Methods such as sequential MCMC or particle filtering [43, 16] use the notion of
approximations of the target by a large number of samples called particles that are propagated
across time using importance sampling. However, those are filtering frameworks and do not
converge to a stationary distribution. Thus, though appearing related in its structure, FLARE
MCMC is quite different to these methods.

A highly influential body of work focuses on reducing the variance of the final estimator
for a target expectation in the Multilevel Monte Carlo (MLMC) framework. Taking inspira-
tion from the multilevel Monte Carlo method [31] for high-dimensional, parameter-dependent
integrals and Multilevel Monte Carlo Path Simulation [22], Hoang et al. [34] proposed a
multilevel MCMC method that applied to Bayesian Inverse problems.

The core idea is to decompose a high-fidelity expectation into a telescoping sum using a
hierarchy of computational models with increasing model resolution. This method achieves
computational speedup by estimating the low variance difference terms with small number
of samples, while the bulk of the computational efforts is spent on the cheap, low-fidelity
estimator. The authors also provide rigorous complexity proof, showing how quickly posterior
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expectation might converge when running iterative samplers on sparse grids using telescopic
expansion on the discretization error.

This MLMC framework has been extended in many directions. Multilevel sequential
Monte Carlo samplers [7] and Multilevel Particle Filters [40] along with previous work [35,
26, 25] extended MLHC to sequential Monte Carlo. Jasra et al. [39] extended MLHC to
the problem of static parameter estimation in partially observed diffusions. Problems with
multiple ways of discretizing were addressed by Multi-Index MCMC [29, 41]. These MLMC
methods use samples from all chains in a telescoping estimator. They target the MSE of a
specific quantity of interest. In contrast, FLARE MCMC uses only samples from the finest
chain (like methods discussed below) and targets the chain’s mixing time, rather than MSE.
Our theoretical analyses in this paper focus on the ergodicity and convergence rates for FLARE
MCMC and are not specific to any particular problem domain.

More similar to FLARE MCMC, several previous methods have shown that replacing
the proposal with an approximation with generally high acceptance probability reduces the
computational cost of the standard Metropolis-Hastings algorithm significantly. This idea
was first proposed by Christen and Fox [9, 20] as a two-stage MCMC method that tests the
original proposal using a cheap approximation to find moves in the chain that are more likely
to be accepted. In other words, a candidate is accepted with the likelihood of the approximate
model before it is evaluated with the more expensive model. In preconditioned MCMC using
coarse-scale simulation proposed by Efendiev, Hou and Luo [18], two-stages are used to reduce
the computational cost incurred in the fine fidelity by testing the coarse model based on high-
fidelity multiscale finite volume model. However, this only performs a single check with a
cheap approximation, and does not exploit it to run a full MCMC subchain.

Multilevel Markov chain Monte Carlo (MLMCMC) [14] achieves computationl efficiency
on the finer levels. If the coarse proposal from the approximation is rejected by the fine
level, the coarse chain continues independently of the fine chain instead of recursively starting
the next coarse chain from the current sample of the fine chain. MLMCMC uses a user-
specified variable that is internal to the likelihood computation and shared across the levels
(for instance, the predicted observations to be compared with the true observations through
a noise model). The samples drawn from the coarse approximation are used to reduce the
variance of this internal variable achieving better proposals from the coarse fidelities.

Lykkegaard et al. [44] proposed Adaptive Multilevel Delayed Acceptance (MLDA), which
adapted a recursive version of MLMCMC over multiple levels. Here, the coarse inner subchain
used to generate subsequent proposals for the current chain is initiated from the current sample
from the outer chain again instead of independently continuing the fine chain even if coarse
proposal is rejected. MLDA also applies an Adaptive Error Model (AEM) [42] to account
for discrepancies between the different fidelities. It takes the two-level AEM from Adaptive
Delayed Acceptance Metropolis Hastings [11, 12] and extends it by adding a telescoping sum
of differences in the model output across multiple levels.

Several multilevel MCMC methods based on delayed rejection, in contrast to delayed
acceptance, have also been proposed and are summarized by Peherstorfer et al. [49]. Adaptive
methods in multistage MCMC [58] proposed using an independence sampler that is a good
approximation for the posterior distribution in the first stage and random walk in the second
stage to help with poor approximation by the independence sampler. Delayed rejection in
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MCMC [24] suggested using a normal distribution as the proposal in the first level and a
normal distribution with the same mean but higher variance in the second level. Higdon et
al. [32] proposed using multiple MCMC chains from low and high fidelities and coupling them
using a product chain and “swapping” updates allowing information to move between the two
fidelity scales. An accelerated MCMC method using local approximations was developed by
Conrad et al. [10] that uses local approximations of either the log-likelihood function or the
forward model of different simulations into the Metropolis-Hastings kernel. Although these
methods use approximations as proposals, they do not exploit layered or recursive MCMC
chains.

Cai and Adams [8] proposed a multi-fidelity Monte Carlo method (MFMC) that uses ran-
domized fidelities as the approximate for the target fidelity. The algorithm does not converge
to the true posterior, but the resulting samples can be used to estimate expectations through
a specific “sign-correction” formula. Our method follows a hierarchy of levels in its sampling
while also sampling from the true posterior and provides a simpler alternative to previous
multilevel methods.

Our multi-fidelity layered MCMC algorithm, FLARE MCMC, has a similar structure to
MLDA in terms of the recursive layers and achieves a similar amount of effective samples
across multiple chains of MLDA. However, our method for mitigating the differences between
approximations is simpler in construction and implementation than that of MLDA, does not
require the identification of any internal variables of the distribution to be sampled, and
generates more effective samples in a shorter amount of time and computational cost. We
demonstrate this on real-world large scientific problems. We also show theoretical convergence
rates, optimal value for the number of inner steps M and prove ergodicity of the adaptation
in layer tuning.

3. FLARE MCMC: Fidelity-based Layer-Adaptive REcursive proposals for MCMC. We
consider a series of models, ordered by fidelity. For instance, we might have a model that
evaluates a differential equation numerically as the main part of the likelihood calculation
(simulating forward in time); the resolution of the spatial or temporal grid used to evaluate
the model can be tuned to change its fidelity. The highest fidelity model is our “true” model,
from whose posterior we wish to sample. FLARE MCMC draws samples from the true model.
Its nested chains use the coarser fidelity models as cheap approximations of this finest fidelity
model to speed up mixing.

Where the standard Metropolis-Hastings algorithm uses a distribution q that proposes the
next sample, FLARE MCMC uses nested Markov chains as the proposal distribution. In a
recursive fashion, each layer uses the result of another MCMC chain with a coarser approxi-
mation as its proposal. The recent sample in the current chain is the starting sample in the
nested chain. The coarser chain runs for M iterations, with each proposed sample evaluated
by the likelihood of the cheaper layer. The last, Mth, sample of the coarser chain is proposed
as the candidate for the next sample in the current chain. At the coarsest fidelity/layer, a
standard proposal distribution is used, for instance a normal distribution centered on the
current point.

This avoids numerous expensive likelihood calculations in the fine fidelity that might end
up rejected, and it allows the proposal to generate samples that are more likely to get accepted
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Figure 1: One sampling step from the finest layer with two coarse fidelities and two iterations
per nested chain. Refer to text in Section 3.1.

by the finest fidelity, since it was accepted by an approximation already. While the coarser
chains have their own computational cost, they can often be orders of magnitude faster to
evaluate, thus leading to an overall savings in the running time of the entire algorithm, as
measured by the quality of the samples generated per computational time.

3.1. Algorithm Specification. Let θ ∈ RR be the set of parameters (over which we are
sampling) and let j ∈ {0, 1, ..., J} be the fidelities ordered in a decreasingly complex fashion (0
is the “true” model and J is the coarsest fidelity). We let πj(θ) be the posterior distribution
according to the jth fidelity model and qj(θ̃|θ) be the proposal distribution for layer j. Here,
θij is the ith sample in the current chain at layer j. The goal is to sample from π0(θ).

Algorithm 3.1 FLARE-Chain(θ0j ,n,j)

for i = 0, . . . , n− 1 do
if j = J then ▷ coarsest layer

Sample θ̃ij from qj(·|θij)
Accept θi+1

j = θ̃ij with probability A from Equation 2.2

Otherwise, reject and θi+1
j = θij

else
θ1j+1, . . . ,θ

M
j+1 = FLARE-Chain(θij , M, j+1)

θ̃ij = θMj+1

Accept θi+1
j = θ̃ij with probability Aj from Equation 3.2

Otherwise, reject and θi+1
j = θij

return θ1j , . . . , θ
n
j

In FLARE MCMC, the proposal distribution qj(θ̃
i
j |θij) for iteration i of a chain at layer j is

another MCMC chain ofM steps targeting the (coarser) posterior πj+1(·), starting this nested
chain at θij . The result of M steps using a chain with stationary distribution πj+1(·) is the

proposal for θ̃ij : qj(θ̃
i
j |θij). More algorithmically, to generate θ̃ij from θij , we run the (coarser)

MCMC algorithm at layer j + 1. We start with θ0j+1 = θij and continue the coarser MCMC
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sampler until θMj+1. We then set θ̃ij = θMj+1. At the coarsest layer, qJ(θ̃
i|θi) is a standard simple

proposal distribution. Figure 1 pictorially demonstrates this for J = 2 inner layers, each with
M = 2 steps.

With the sampling scheme so defined, it remains to construct the acceptance probability
for each layer: A0,A1, . . . ,AJ . We follow a standard Metropolis-Hastings method for every
layer and therefore Aj = min(1, rj(θ

i
j � θ̃ij)). At the coarsest layer, the ratio rJ(θ

i
J � θ̃iJ) is

just as in Equation 2.3 because qJ is a standard proposal distribution.
When j < J , the proposal distribution is from a Markov chain that obeys detailed balance.

Therefore

(3.1)
qj+1(θ

i
j |θ̃ij)

qj+1(θ̃ij |θij)
=
πj+1(θ

i
j)

πj+1(θ̃ij)
0 ≤ j < J

and thus

(3.2) Aj(θ
i
j� θ̃

i
j) = min

(
1,
πj(θ̃

i
j)

πj(θij)
·
πj+1(θ

i
j)

πj+1(θ̃ij)

)
.

Note this equation does not depend on M (the number of steps for the coarser chain at layer
j + 1). While this chain has almost certainly not mixed for small M , the ratio qj(θij |θ̃ij)/qj(θ̃ij |θij)
is the same as if the chain had completely mixed and the proposed new state, θ̃ij , were

from the true posterior of the model at layer j + 1. The values πj+1(θ̃
i
j) and πj+1(θ

i
j) were

already calculated as part of the chain at layer j+1 and therefore do not take any additional
computation time. FLARE MCMC is summarized in Algorithm 3.1. To gather N samples
from the true posterior, the algorithm is called with FLARE-Chain(θ0, N, J = 0).

3.2. Convergence Rate. We show a convergence rate for FLARE MCMC. We measure
the distance to the stationary in terms of total variation distance as follows.

Definition 3.1 (Strasser (1985) [55]). The total variation distance between two probability
measures ν1 and ν2 is defined as

∥ν1 − ν2∥ = sup
A

|ν1(A)− ν2(A)|.

The minorization condition of Markov chains, used by Roberts and Rosenthal [51], provides
a means of bounding the convergence rate. For any Markov chain with a one step transition
probability of p(θi → θi+1), we let pn(θi → θi+n) denote the corresponding n step transition
probability. Formally, the definition of the minorization condition is stated below.

Definition 3.2 (Roberts and Rosenthal (2004) [51]). A Markov chain on Θ satisfies the
minorization condition if there exists an ϵ > 0, a positive integer n, and a probability measure
ν(.) such that

(3.3) pn(θ0 → θn) ≥ ϵν(θn) ∀θ0, θn ∈ Θ.

With respect to the stationary distribution, the probability of transitioning from θ to θ′

can be minorized by a lower bound such that p1j (θ → θ′) ≥ ϵπj(θ
′).
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Lemma 3.3. Assume the minorization condition holds at the innermost level (j = J):
p1J(θ

i
J → θi+1

J ) ≥ ξJ ·πJ(θ
i+1
J ) for some ξJ > 0. Then, there exists a minorized lower bound on

levels j < J such that

(3.4) p1j (θ
i
j → θi+1

j ) ≥ ξj · πj(θi+1
j ) ∀θij , θi+1

j

where ξj = (1− (1− ξj+1)
M ) ·min

θ

(
πj+1(θ)
πj(θ)

)
.

We call ξj the minorization constant for level j. This satisfies the necessary minorization
condition of Theorem 8 in the original paper [51]. This allows us to get a quantitative bound
on the distance to the stationary of every level as stated in Theorem 3.4. The proof for Lemma
3.3 can be found in Appendix A.

Theorem 3.4. Let pnj (θ
0
j → ·) be the distribution for layer j with an invariant target prob-

ability πj(·). FLARE MCMC is uniformly ergodic and converges as
∥∥∥pnj (θ0j → ·)− πj(·)

∥∥∥ ≤

(1 − ξj)
n where ξj = (1 − (1 − ξj+1)

M ) · min
θ

(
πj+1(θ)
πj(θ)

)
as in Lemma 3.3. Most critically, it

holds for layer j = 0.

Proof. The results follow from the minorization condition established in Lemma 3.3.

Although the theorem above establishes the convergence of the chain to the invariant target
distribution, it illustrates several aspects about the inner chains. In particular, ergodicity
requires that the chain be able to reach all regions of the target’s support. Therefore, the
coarser approximations’ supports must be supersets of the finer ones. The coupling strength,
ξj , in turn depends on the coupling strength of the coarser approximations’ chains, ξk, k > j.
Thus, the effects of the mixing times of the inner chains on the outer chain are captured in
this theorem.

The similarities of the approximations to each other are captured in the minθ

(
πj+1(θ)
πj(θ)

)
terms. Thus, the theorem also quantifies the effects of similarities and dissimilarities between
the approximations on the total convergence rate. If the modes of the target distribution
are preserved across coarsening, then we would expect these terms to be larger and therefore
the outer chain to mix faster. Ideally, the minimum in this term could be replaced with an
expectation, thus turning it into the KL-divergence between adjacent layers. We have not yet
determined whether or how this might be possible.

3.3. Optimal number of inner steps M . To understand how to select the number of
inner steps for each layer Mj , we derive a theoretical expression for optimal Mj that balances
the decoupling rate of the chains and the cost of likelihood evaluations. The following lemma
provides an analytical expression for the value ofMj that maximizes the cost-aware decoupling
rate. The proof for Lemma 3.5 can be found in Appendix B.

Lemma 3.5. For layers 0 ≤ j < J , suppose the minorization condition hold such that

p1j (θ
i
j → θi+1

j ) ≥ ξj ·πj(θi+1
j ), where ξj =

(
1− (1− ξj+1)

Mj
)
·min
θ

(
πj+1(θ)
πj(θ)

)
is the minorization

constant, and Mj ≥ 0 is the number of inner steps. Let the total cost per step at level j be
Bj = bj+Mj ·Bj+1 where bj > 0 is the cost of evaluating the likelihood at level j and Bj+1 > 0
is the cost of a single evaluation of the inner layer j+1. Define the cost-aware computational
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decoupling rate as

(3.5) f(Mj) =

(
1− (1− ξj+1)

Mj
)
·min

θ

(
πj+1(θ)
πj(θ)

)
Bj

.

Then the real-valued maximizer M∗
j of f(Mj) is

(3.6) M∗
j = − 1

Υ
W−1

(
− e−Υµ

)
− µ

where Υ = − log(1 − ξj+1), µ =
bj

Bj+1
+ 1

Υ and W−1 is −1 branch of the Lambert W

function.

However, this expression is not directly usable in practice, since it depends on the unknown
coupling minorization constant ξj+1 which is generally unknown and difficult to approximate
in MCMC settings. The optimizer M∗

j is a real-valued quantity, whereas in practice the
number of inner steps must be an integer. Instead, we have found empirical values for M that
offers the best trade-off between computation time and sampling efficiency in the experiment
section. Nevertheless, this lemma provides a theoretical benchmark for the optimal trade-off
between computational cost of likelihoods and effective mixing across layers.
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Figure 2: Posterior of different fidelities; coarse model is
the small angle approximation. See Section 4.1.

3.4. Layer Tuning. The algo-
rithm above uses the coarser fideli-
ties to guide the finer ones. Early in
the chain, this is useful for quickly
driving the samples toward high-
probability regions. However, this
mismatch between the fidelities can
cause problems later because it can
steer the chain away from high-
probability regions in the fine fi-
delity model that do not overlap
with high-probability regions of the
coarse fidelity model. Figure 2
demonstrates an example of such
partial, but not complete, overlap in one of our examples. To combat this, we present a
simple modification that does not require estimation of any internal variables of the probabil-
ity models, nor estimation of means or variances from multiple chains.

Recall πj(θj) is known up to a normalizing constant: πj(θj) = π̃j(θj)/Zj where π̃j(θj) is
the unnormalized distribution and Zj is the normalzing constant. We modify the target
distributions for coarser chains (and thus the proposal distributions for all j > 0) as

ψj(θj) =
(
π̃j(θj) + ωj

)
/ζj(ωj) ∀ 0<j≤J(3.7)

where ζj(ωj) is the normalizing constant of this new distribution which depends on ωj .
1

1We assume the domain of θ, Θ, is of finite volume.
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We now use ψj(θj) in place of πj(θj) in Equation 3.2, therefore modifying the acceptance
ratio for all 0<j≤J as

Aj(θ
i
j� θ̃

i
j) = min

(
1,
ψj(θ̃

i
j)

ψj(θij)
·
ψj+1(θ

i
j+1)

ψj+1(θ̃ij+1)

)
.(3.8)

For the finest layer, things remain the same (or alternatively, ω0 = 0), because we do not want
to change the distribution of the overall sampler.

This effectively mixes the stationary distribution of the jth layer with a uniform distri-
bution (we have added a constant to the posterior and then renormalized), encouraging the
proposal to explore more widely than the coarser layer would normally. While unsophisticated,
we found it simpler to implement and compute than other options and just as effective.

Instead of leaving (ω1, ω2, . . . , ωJ) as hyper-parameters, we use gradient descent to adapt
them over the course of the sampling. We adjust ωj+1 to minimize the Kullback-Leibler
divergence between layers ψj and ψj+1:

(3.9) KL(ψj∥ψj+1) = E
θ∼ψj

[ln(ψj)]− E
θ∼ψj

[ln(ψj+1)] .

This tries to make the coarser (approximating) distribution ψj+1 more similar to the
distribution ψj . Because the first term does not depend on ωj+1, the objective function is to
maximize

(3.10) Hj+1 = E
θ∼ψj

[
ln(ψj+1)

]
.

Using Equation 3.7,

∂

∂ωj+1
Hj+1 =

∂

∂ωj+1

(
E

θ∼ψj

[ln (π̃j+1(θ) + ωj+1)]− ln ζj+1(ωj+1)

)
= E

θ∼ψj

[
∂

∂ωj+1
ln (π̃j+1(θ) + ωj+1)

]
− E
θ∼ψj+1

[
∂

∂ωj+1
ln (π̃j+1(θ) + ωj+1)

]
(3.11)

where the second step replaces the derivative of the log-partition function with the expected
derivative of the log-probability.

The first term is an expectation with respect to the distribution at the lower layer j. We
assume that the lower layer has mixed and therefore, the starting state for the chain at layer
j + 1 is a sample drawn from ψj . The second term is an expectation with respect to the
distribution at this layer, j + 1. We let the sample at the end of this chain after M steps
approximate a sample from this distribution. This is similar to the approximation employed
by M -step contrastive divergence [33]. Although this is not guaranteed to converge [56], in
practice we have found it to work well. Thus, the total derivative for the gradient ascent
update is

(3.12)
∂

∂ωj+1
Hj+1 ≈

1

π̃j+1(θ0j+1) + ωj+1
− 1

π̃j+1(θMj+1) + ωj+1
.
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Note that these denominators are calculated during the MCMC chain and therefore the de-
rivative requires very little extra computation.

A single ωj is kept for each layer and is maintained across subchains at that layer. We use
a learning rate of 10−3 to adjust ωj for all experiments. An update is made on layer j once
after each M -step subchain.

Algorithm 3.2 FLARE-with-layer-tuning(θ0j ,n,j)

for i = 0, . . . , n− 1 do
if j = J then ▷ coarsest layer

Sample θ̃ij from qj(·|θij)
Accept θi+1

j = θ̃ij with probability A from Equation 2.2

Otherwise, reject and θi+1
j = θij

else
θ1j+1, . . . ,θ

M
j+1 = FLARE-with-layer-tuning(θij , M, j+1)

θ̃ij = θMj+1

Update gradient of ωj+1 using ∂
∂ωj+1

Hj+1 from Equation 3.12

Accept θi+1
j = θ̃ij with probability Aj from Equation 3.8

Otherwise, reject and θi+1
j = θij

return θ1j , . . . , θ
n
j

To make the innermost Gaussian proposal more robust, we adaptively update the covari-
ance of the proposal distribution as initially proposed in the AM algorithm [27]. We use the
history of chains from the coarsest layer θ0J , θ

1
J , . . . , θ

t
J to update the covariance for the inner

most proposal distribution. By using all previous states of the coarsest layer, the proposal
distribution quickly adapts using the accepted samples. This rapid start of adaptation ensures
good mixing in the inner most layer which gives higher quality candidate samples for the finer
chains. We show the recursive algorithm with layer tuning adaptation added in Algorithm
3.2. Here we update the gradient after M steps of each layer and use it in the acceptance
probability with ω mixed in as a uniform distribution to the target distribution.

3.5. Ergodicity of Layer Tuning. We show FLARE MCMC with adaptive tuning of the
proposals at each layer is ergodic. This can be shown with diminishing adaptation and simul-
taneous uniform ergodicity.

Lemma 3.6. For layers 0 ≤ j < J , let γj ∈ Γj be the adaptations for the proposal at layer
j or the chain at level j + 1, i.e, γj = ωj+1 ↔ ψj+1(θ) ↔ pj+1(θ → ·) where Γj ∈ R and ψj+1

is the target at layer j + 1 with the layer tuning adaptation added. Let pj,γj (θ → ·) denote
the transition distribution of chain at level j using adaptation γj, starting in state θ. Assume
∀j, ωj ∈

[
ω, ω

]
for some 0 < ω < ω, and, at the inner most layer, there exists a minorization

constant ξJ > 0 such that
∥∥pMJ,γJ (θ → ·)− ψJ(·)

∥∥ ≤ (1− ξJ)
M . Then,

(a) Simultaneous uniform ergodicity: For all τ > 0. there exists n = n(τ) ∈ N such that

(3.13)
∥∥pnJ,γJ (θ → ·)− ψj(·)

∥∥ ≤ τ
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for all θ ∈ Θ and γj ∈ Γj.
(b) Diminishing adaptation: The amount of adaptation diminishes in probability with the

number of steps t in the adaptation as

(3.14) lim
t→∞

sup
θ

∥∥∥∥pj,γtj (θ → ·)− p
j,γt+1

j
(θ → ·)

∥∥∥∥ = 0.

Proof for Lemma 3.6 can be found in Appendix C.

Theorem 3.7. FLARE MCMC with an adaptive layer tuning parameter is ergodic.

Proof. We use Lemma 3.6 to show the conditions necessary in Theorem 1 of Roberts and
Rosenthal (2007) [52]. This shows that the adaptive algorithm is ergodic.

4. Experiments. We measure the efficiency of the MCMC methods tested using the ef-
fective sample size (ESS) [50] estimated across multiple chains as

(4.1) NESS = (N ·K)/
(
1 + 2

2m+1∑
k=1

ρ(k)

)

where N is the number of samples, K is the number of chains, ρ(k) is the lag-k correlation, and
m is the largest value such that ρ(2m)+ ρ(2m+1) > 0. We compute ESS for each parameter
for the “bulk” (entire distribution) and “tail” (largest and smallest 5% of the samples) of the
distributions.

We compare FLARE MCMC with standard Metropolis-Hastings (with proposal adapta-
tion introduced by Haario et al. [27]) and other multi-fidelity MCMC methods: Multilevel
Delayed Acceptance MCMC (MLDA) [44], MLDA with Adaptive Error Model (AEM) [11, 44],
Multi Level MCMC (MLMCMC) [14, 45], and Multi-fidelity Monte Carlo [8]. We give more
detail about the different methods used for comparison:

1. MLDA without any adaptation: Introduced by Lykkegaard et al. [44], this method
uses recursive chains of approximations as proposals. However, there is no adaptation
being done to “correct” the approximations. Even the authors note that without
adaptation, the chains do not mix well, and have poor effective sample sizes.

2. MLDA with AEM: Extended by Lykkegaard et al. [44] in the same paper, this method
uses a similar structure to the above. They also use Adaptive Error Model (AEM)
as a way to deal with the discrepancies between the different layers which uses a
telescoping sum of differences in the mean of the approximations. They demonstrate
with the subsurface flow model that MLDA with AEM leads to good mixing and high
ESS. We demonstrate similar results for two of our experiments. Our subsurface flow
model experiment uses the same fidelities as set up by the original authors; however,
we run it to collect more samples using a higher number of chains.

3. Multi Level MCMC (MLMCMC): This method was proposed by Dodwell et al. [14]
and was then applied to MLDA. A quantity of interest, Q, is proposed that is related
to the parameters of the model. The samples drawn from the posterior are used to
reduce the variance of Q. Since in MLDA, samples are not only drawn from a “true”
posterior, but also approximations, the samples from the approximate levels are used
to reduce the variance of Q. They state that it thus requires fewer samples to achieve
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the same variance. Using a telescopic sum, the difference of Q estimates between levels
are used to correct Q with respect to the next coarser level. For the pendulum model,
Q is the mean of the outputs. For the subsurface flow experiment used by the original
authors of MLDA, Q is the hydraulic head at some fixed point (x, y) = (0.5, 0.45);
that is, the model PDE is solved at these points at each level using samples from the
coarser approximate level.

4. Multi-Fidelity Monte Carlo (MFMC): This method was proposed by Cai and Adams
[8]. It uses a continuum of models with increasing fidelity and has a single Markov
chain with a random choice of the fidelity, K, at each step. The fidelityK is part of the
sampled state-space and therefore also part of the proposal distribution and acceptance
probability. We map K to a reasonable range of fidelities for each experiment. For
the pendulum model, we map K to the error tolerance of the integrator, ϵ, as ϵ =
eK/10 + 10−6. For the subsurface flow experiment, we let the grid resolution be equal
to 10K (K is the sampled fidelity of this method) in order to map the resolution
to the fidelity range expected by the algorithm’s implementation. The samples from
this method are not from the true posterior, but rather can be corrected to estimate
an expectation (like the mean). Therefore, we do not plot the evolution of effective
samples with respect to time in the results, as they are not samples from the true
posterior.

For the MLDA-based methods, we use the authors’ implementations in the open-source
probabilistic programming package PyMC3 [53] by Lykkegaard et al. [44] For MFMC, we use
the author-provided implementation.

These implementations have significant computational overhead compared with our im-
plementation of FLARE MCMC. Therefore, we only measure the time taken in likelihood
computation (which is the same code for all methods).

We present three different experimental posterior sampling problems across different sci-
entific domains: a simple pendulum, a hydrology simulation that was used by prior methods
as a benchmark, and a cosmology simulation that stresses computational limits.

Because of the computational expense of the cosmology simulation, we are not able to
collect a sufficient number of samples to get a reliable estimate of the effective sample sizes.
Instead, we compare our estimates to those in the cosmology literature.

For each experimental domain, we construct three fidelities by adjusting the relevant
simulation parameter. In all cases, we measure our abilities to sample from the highest
fidelity (j=0). For methods labeled “(single),” there is a single higher fidelity layer (J = 1).
For methods labeled “(double),” there are two higher fidelity layers (J = 2): the one from
the “(single)” experiments, plus one more that is even more coarse. For the coarsest fidelity,
a Gaussian proposal distribution is used with an adaptive covariance matrix.

In the pendulum and cosmology experiments, this normal distribution is reflected to keep
parameters within their respective ranges. FLARE MCMC can be extended beyond J =
2 layers. However, just two layers improves over the standard MCMC and other multi-
level methods significantly. Layers’ costs should be roughly orders-of-magnitude different in
computational costs. For these examples, J=2 is the limit of how many layers can practically
be constructed with orders-of-magnitude different computational costs.
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Table 1: Mean ESS for bulk and tail distributions across 50 runs for 10 chains each, and mean
value of each parameter with std error across all 500 total runs are listed. Average acceptance
rates are listed per layer and the total samples are based on the average cost of likelihood
evaluations per sample per method. Each chain is run for a total of 1000 seconds.

(a) Simple Pendulum

α L
acceptance

rate
total

samples
bulk
ESS/s

tail
ESS/s

mean sd
bulk
ESS/s

tail
ESS/s

mean sd j = 0 j = 1 j = 2

MCMC 21.43 29.94 0.953 0.492 17.94 29.94 1.265 0.355 0.29 100000

FLARE MCMC(single) 52.47 58.42 1.081 0.019 45.85 54.95 1.372 0.016 0.98 0.24 60000
AEM MLDA (single) 39.41 53.91 1.064 0.062 42.20 52.24 1.371 0.051 0.98 0.27 50000
MLMCMC (single) 25.03 34.43 1.044 0.291 21.54 32.99 1.351 0.167 0.92 0.32 44500
MLDA (single) 11.64 1.49 1.059 0.041 15.36 7.73 1.361 0.022 0.91 0.31 45000

FLARE MCMC(double) 64.26 72.10 1.086 0.001 56.68 68.20 1.374 0.009 0.99 0.86 0.29 35000
AEM MLDA (double) 56.92 65.53 1.085 0.006 50.95 58.51 1.375 0.003 0.98 0.89 0.3 25000
MLMCMC (double) 33.82 37.05 1.049 0.015 33.09 39.94 1.361 0.015 0.90 0.81 0.28 25500
MLDA (double) 10.01 7.54 1.053 0.035 4.96 12.99 1.362 0.024 0.86 0.72 0.24 30000

MFMC 1.075 0.057 1.348 0.132 0.46 370000

(b) Subsurface Flow model

θ1 θ2 θ3
acceptance

rates
total

samples
bulk
ESS/s

tail
ESS/s

mean sd
bulk
ESS/s

tail
ESS/s

mean sd
bulk
ESS/s

tail
ESS/s

mean sd j = 0 j = 1 j = 2

MCMC 5.35 7.81 -0.457 0.0037 5.49 8.04 0.466 0.0036 5.63 8.19 0.076 0.0034 0.27 10000

FLARE MCMC (single) 8.74 11.99 -0.460 0.0030 8.58 11.81 0.467 0.0036 8.63 11.58 0.076 0.0028 0.98 0.26 8365
AEM MLDA (single) 7.77 4.67 -0.459 0.0032 6.96 4.29 0.466 0.0033 8.16 6.24 0.076 0.0030 0.99 0.29 4100
MLMCMC (single) 4.35 5.86 -0.460 0.0028 4.37 3.27 0.465 0.0031 5.29 6.49 0.077 0.0021 0.93 0.32 8000
MLDA (single) 3.65 1.52 -0.463 0.0035 4.78 1.56 0.490 0.0036 3.33 3.02 0.075 0.0031 0.87 0.34 8250

FLARE MCMC (double) 15.49 21.35 -0.460 0.0026 15.141 19.69 0.469 0.0026 15.07 19.76 0.077 0.0023 0.99 0.95 0.3 6500
AEM MLDA (double) 13.29 14.70 -0.460 0.0035 12.32 13.22 0.468 0.0035 12.70 14.45 0.077 0.0033 0.99 0.93 0.24 2285
MLMCMC (double) 8.46 10.49 -0.459 0.0027 8.04 9.13 0.468 0.0030 7.47 5.81 0.077 0.0024 0.92 0.89 0.31 6000
MLDA (double) 4.48 5.05 -0.461 0.0036 5.33 6.60 0.469 0.0033 5.28 7.35 0.076 0.0030 0.93 0.91 0.27 6350

MFMC -0.475 0.026 0.418 0.041 0.102 0.003 0.39 5700

4.1. Simple Pendulum. The equation of motion for a pendulum of length L, mass M ,
and initial angle α0 is α̈ = − (g/L) sinα. Our goal is to sample from the posterior of the
distribution the two parameters θ = (L,α) conditioned on the observations of α at three
irregularly spaced times during the motion: α(1) = −0.85, α(2.3) = 0.9, α(5.0) = 0.95.
Observations of these angles are assumed to be corrupted by Gaussian noise with known
standard deviation: σ = 0.1. Different fidelities correspond to adjusting the error tolerance of
an adaptive Runge-Kutta 4(5) ODE integrator [15] (10−3 or 10−6 in our experiments) with
stepsize control and dense output [28]. As a separate coarsest layer of approximation, we
use the small angle approximation (which does not hold for the observations), sin(α) ≈ α,
reducing the equation of motion to a simple harmonic motion which can be solved analytically
as α(t) = α0 cos(t

√
g/L). The difference between the finest fidelity posterior and this small
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angle approximation is shown in Figure 2.
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Figure 3: ESS as a function of M for two single layered
(J = 1) methods with fixed computation time of 500
seconds each ran across 50 different chains.

Results. To judge the impor-
tance of setting M , we evaluated
our method across different val-
ues of M with fixed total compu-
tation time. The effective sam-
ple size (ESS) is plotted as a
function of M for the two com-
peting multilevel methods in Fig-
ure 3. We can see that beyond
M = 5, the increased computation
time from running longer inner sub-
chains leads to a decrease in overall
sampling efficiency, indicating that
M = 5 offers the best trade-off be-
tween computation time and sam-
pling efficiency. Therefore, the lay-
ered subchains were run for M = 5
steps.

We ran 10 chains of the finest fi-
delity for all methods.We replicated
this experiment (of 10 chains) 50
times. Table 1a summarizes the mean effective sample size per second (ESS/s) and the
average mean of the parameters across all 500 chains with the standard deviation along with
the acceptance rates for every layer.

Figure 4 shows ESS (across all 10 chains) as a function of computation time for each
method, with the total number of samples (N) generated in 1000 seconds. The standard
deviations are plotted as (barely visible) vertical bars. For the sake of readability, we have
separated our plots to show how each method performs with one level of nesting (single) and
two levels of nesting (double).

We note that the MFMC method obtains significantly more samples in the same time
budget. This result arises from its randomized fidelity selection, which collects samples at
low-fidelity evaluations more frequently than other methods. Since the samples from this
method are not from the true posterior, we do not list the effective samples in the table.
However, for comparison, the average bulk and tail ESS/s for 50 runs of 10 chains each
measured for parameters [α, l] are [24.80, 20.46] and [26.52, 30.61] for MFMC.

All methods are able to improve by using more fidelities. Our FLARE MCMC method is
consistently and significantly better than the other methods (including the best one, MLDA
with AEM as shown in the table) in terms of ESS/s in both the bulk and tail of the distribution.
The acceptance rates for the multilevel methods indicate that while the coarsest level accepts
about a third of the samples (consistent with Gelman et al. [21]), the proposed sample
from that level is accepted by the finer levels frequently since it was already accepted by an
approximate coarse level. The mean of the parameter across different runs of the standard
MCMC has a higher standard deviation compared to the other multilevel methods suggesting
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Figure 4: Pendulum Model: ESS for bulk and tail across 50 runs (mean and std. dev.) for
single and double layers of nesting.
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Figure 5: Wasserstein distance to true distributions for the pendulum model.

that some runs of MCMC do a poor job at finding the modes in the posterior. FLARE MCMC
produces more samples in the same amount of time compared to its competing method MLDA
reflecting that our sampler requires fewer likelihood evaluations per step.

Figure 5 shows the distributional distance to the true distribution as a function of number
of samples, averaged over 500 chains. The true mean and standard deviation are unknown
for all the experiments in the paper, and measuring the distance between a multi-dimensional
distribution which can be evaluated (only up to a normalizing constant) and a distribution
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Figure 6: Subsurface Flow Model: ESS for bulk and tail across 50 runs (mean and std. dev.)
for single and double layers of nesting.

represented by samples is non-trivial. However, we have analyzed the 1-dimensional marginals
of the pendulum model in the following way. We evaluate the true unnormalized distribution
on a grid, normalize it, project it to the marginal of interest and then treat it as (weighted)
samples for a sample-to-sample Wasserstein distance between it and the samples from the
MCMC methods. As we refine the grid, the distances become smaller (for almost all methods).
We refine the grid until these distances stabilize, resulting in about a 1000-by-1000 grid (1
million llh evaluations). From the figure, it is clear that for both the parameters, FLARE
MCMC ends up with the smallest Wasserstein distance to the true distribution.

4.2. Estimation of Soil Permeability in Subsurface Flow. We consider a simple problem
in subsurface flow modeling [14]. This model was also used to evaluate the MLDA methods by
the original authors [44], and we did not modify the code used by MLDA (except to increase
the number of chains and measure time).

The classical equations governing (steady state) single–phase subsurface flow consist of
Darcy’s law coupled with an incompressibility condition:

(4.2) w + k∇p = g and ∇ · w = 0

subject to suitable boundary conditions. All quantities are fields over D = [0, 1]2 ⊂ R2 for
these experiments. Here p denotes the hydraulic head of the fluid, k is the permeability tensor,
w is filtration velocity (or Darcy flux) and g is the (known) source term.

We are interested in the permeability given observations (with known-variance Gaussian
noise) of the hydraulic head at 16 regularly spaced points in D. k is simplified to be the
gradient of a random scalar field. The log-Gaussian scalar field is parameterized with a
truncated Karhunen-Loéve (KL) expansion (to three terms, following MLMCMC [14]). These
three parameters (θ) have a standard normal prior and we sample from their posterior.

Computing the likelihood involves solving a partial differential equation (PDE) with known
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boundary conditions for a given θ and comparing the results for p at the observation points.
The fidelities correspond to different grid resolutions for the PDE solver: 120× 120 (highest),
30× 30, and 10× 10 (coarsest).

Results. Previous work reports that M = 5 achieves the best trade-off between effective
sample size and computation time for this experimental setup [44]. Therefore, we adopt the
same value to ensure a fair comparison with our method. Table 1b summarizes the same
statistics for this model with the same set-up as the pendulum experiments. Figure 6 shows
ESS (across all 10 chains) as a function of computation time for each method. In terms
of ESS/s, our method improves over the standard MCMC and outperforms the multilevel
methods for the same amount of likelihood computational budget, especially in the tail of
the distribution. All methods converge to similar means of the parameters with low standard
deviation among chains.

We note that MFMC collects fewer number of samples compared to other methods since
each sample requires multiple log likelihood calculations in the same high fidelity to update K,
leading to significant add up of computational costs. For MFMC, the estimated mean ESS/s
for bulk and tail for parameters [θ1, θ2, θ3] are [0.128, 0.081, 0.710] and [0.227, 0.161, 1.107].
But, again, the samples from MFMC were never intended to be interpreted as from the true
distribution.

4.3. Structure Formation in the Universe with N-body Gravitational Simulation. An
important problem in modern-day cosmology is to generate theoretical models of the Universe
on very large scales (tens of Mpc across) that can be compared to observations. Bayesian
inference allows cosmologists to measure quantities of fundamental physics significance, such
as the nature of dark energy and dark matter [48]. The theoretical models needed for next
generation telescopes, such as euclid [6] and the Roman Space Telescope (wfirst) [54], are
based on expensive numerical simulations, some of which require many days of computer time
for each evaluation. For such a computationally expensive model, we show the efficacy of
FLARE MCMC as compared with the standard Metropolis-Hastings algorithm and MLDA.

One of the most frequently used summary statistics is the galaxy power spectrum, P gg

(a bold P is a power spectrum, not a distribution): the two-point clustering of galaxies in
Fourier space as a function of the wavenumber scale, k. We use a slightly simplified model
for the galaxy power spectrum for (relative) ease of computation. We perform a forward
simulation which starts from a given set of cosmological parameters and predicts the galaxy
power spectrum. It works by following the evolution of the Universe under the influence of
gravity, from its beginnings in an almost uniform density state to the diverse collection of
galaxies sitting in dark matter potentials observed today.

We sample from the posterior density of four cosmological parameters:
θ1 The dimensionless Hubble constant, h, which characterizes the Universal expansion

rate and thus the recession velocity of distant galaxies. A redshift zero galaxy at
distance d Mpc recedes at a speed v = H0d, where H0 = h × 100 km s−1Mpc−1.
Measuring h is of importance to understand dark energy.

θ2 The dimensionless total matter density, 0 < Ω0 < 1. Ω0 is the energy density of matter
as a function of the critical density. Ω0 is important because it can be used to infer
the density of dark matter.
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θ3 The dimensionless scalar perturbation amplitude, As, of the primordial fluctuations
at the wavenumber k = 0.05Mpc−1. As is of interest because it connects to the
uncertain high energy physics of the Early Universe. Larger values of As correspond
to a clumpier early Universe and so lead to larger P gg.

θ4 The dimensionless linear bias, b, which is used to shift the amplitude of our simulated
matter power spectrum to match the amplitude of the galaxy power spectrum. This
is to account for the difference between observed galaxies and dark matter (which is
used by the forward model):

(4.3) Pmodel(θ) = b2 · P dm(h,Ω0, As),

where b is the scale-independent linear bias and P dm is the simulated dark-matter
power spectrum directly computed from the output density field of FastPM.

The posterior density is conditioned on the galaxy power spectrum from SDSS-III Baryon
Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) as our observational data
source [13, 4]. We have used a subset of the BOSS data from the North Galactic Cap (NGC)
at z = 0.38, which includes ∼ 106 galaxies, from Ivanov et al. [37].

The likelihood function is a multivariate Gaussian between the galaxy power spectrum
from BOSS, P gg, and the galaxy power spectrum from the forward model, Pmodel(θ):

(4.4) lnL(θ) = −1

2
(Pmodel(θ)− P gg)

⊺C−1(Pmodel(θ)− P gg) + k.

C is the covariance matrix of the galaxy power spectrum, also estimated observationally.
The most expensive part of the forward model, evolution under gravitational force, is

computed using FastPM [19]. FastPM has a couple of tunable fidelity parameters. The size of
the region simulated controls the amount of data available and may have a non-linear effect
on the accuracy of the result. We thus fix the size of this region to 1024 Mpc/h and instead
change the number of particles. More particles in the simulation mean higher resolution, more
accurate power spectrum at higher wavenumber k, and thus the likelihood function is higher
fidelity. For N-body simulations, the compute time usually scales as N logN , where N is
the number of particles. Thus a simulation with a 5123 number of particles is ≃ 80 times
more expensive than a 1283 simulation. We therefore set the fidelities by only adjusting the
number of particles used in the simulation to be 512 (highest), 384, and 256 (coarsest). Note
this calculation is distributed across 20 cores (using MPI) and therefore a saving of 1 hour
corresponds to 20 core-hours.

We compare our estimated distributional means to previous computations on the same
data. For the parameters h and Ω0, we compare to the means reported by Ivanov et al. [38]
on the same data using their own MCMC simulation (h = 0.661 and Ωm = 0.290). We have
only a single linear bias term, compared with the multiple such terms of Ivanov et al. [38].
Therefore, we can compare neither b nor As (which is heavily related to b) to their results.
Instead, we measure As against the best fit value from the Planck Satellite [2], As = 2.09 and
b = 2, consistent with comparable BOSS measurements [38]. While these are modes (and not
means), they are the best independent estimates we can obtain.
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Results. Extreme running time dictated smaller values for M for this experiment. We
reduced them by a factor of 2 (approximately) and used M = 2 for inner substeps. Figure 7
shows that the FLARE MCMC methods converge to the mean values from previous literature
better than the standard Metropolis Hastings method using fewer samples and less time.
The As parameter has slightly strange behavior. We can still see better convergence of our
methods. However, note that the best-fit value of As we are taking as “ground truth” is
measured (with error) from a different dataset, and thus is likely not the true mean of our
posterior. Many large scale structure experiments prefer a lower value of this parameter than
Planck, a feature known as the S8 tension [1]. The pairwise plots of the posterior can be
found in the Appendix. From the posteriors, it is clear that FLARE MCMC is better at
approximating the modes of the distribution as compared to MCMC. Figure 8 shows the
trace plot for a random run of MCMC and FLARE MCMC. Our method shows better mixing
than MCMC and is less likely to reject proposed samples.

5. Summary. Many scientific and engineering problems involve simulations or solving
differential equations. In this paper, we present an efficient multi-fidelity layered MCMC
that exploits the ability to reduce the accuracy of models leading to approximations of the
posterior. In a recursive, nested fashion, these approximations act as proposals for MCMC-
based inference. We add layer tuning that successfully encourages the approximate proposals
to explore the distribution well. We demonstrate with experimental results using models
from three different scientific domains with varying costs that out method, FLARE MCMC,
is simple, and yet produces more efficient samples than existing adaptive multilevel MCMC
methods with the same computational budget.

Appendix A. Convergence Rate Proofs.
We show proofs for convergence rates in the main paper here. We first use Lemma A.1 to

show that after M steps of a coarse chain, we can obtain a minorized lower bound that can
be recursively used in its finer layer.

Lemma A.1. Let pj(· → ·) be the transition distribution of the Markov chain at level j with
an invariant target distribution πj(·). For any level j, if there exists a ξj > 0 such that
p1j (θ

0
j → θ1j ) ≥ ξjπj(θ

1
j ) for all θ0j , θ

1
j ∈ Θ, then

(A.1) pMj (θ0j → θMj ) ≥
(
1− (1− ξj)

M
)
πj(θ

M
j ) ∀θ0j , θMj ∈ Θ

Proof. We prove this using induction. We can verify the base case for k = 1 such that
p1j (θ

0
j → θ1j ) ≥ (1 − (1 − ξj)

1)πj(θ
k
j ) = ξjπj(θ

1
j ). This is held by the assumption made in the

lemma.
Assume using the induction hypothesis that, pkj (θ

0
j → θkj ) ≥ (1−(1−ξj)k)πj(θkj ). We need

to show that pk+1
j (θ0j → θk+1

j ) ≥ (1− (1− ξj)
k+1)πj(θ

k+1
j ).

Note pkj (θ
0
j → θkj ) can be written as pkj (θ

0
j → θkj ) = ϕkπj(θ

k
j ) + (1 − ϕk)rj(θ

k
j | θ0j ), where

ϕk is the probability that the chain couples to the stationary distribution in k steps, and
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rj(θ
k
j | θ0j ) is the remaining distribution that depends on θ0j .

pk+1
j (θ0j → θk+1

j ) =

∫ [
pkj (θ

0
j → θkj ) · p1j (θkj → θk+1

j )
]
dθkj

=

∫
p1j (θ

k
j → θk+1

j )
[
ϕkπj(θ

k
j ) + (1− ϕk)rj(θ

k
j | θ0j )

]
dθkj

=

∫
ϕkπj(θ

k
j )p

1
j (θ

k
j → θk+1

j )dθkj +

∫
(1− ϕk)rj(θ

k
j | θ0j )p1j (θkj → θk+1

j )dθkj

We know ϕk ≥ 1− (1− ξj)
k. Thus,

≥ (1− (1− ξj)
k)πj(θ

k+1
j ) + (1− ξj)

k

∫
rj(θ

k
j | θ0j )p1j (θkj → θk+1

j )dθkj

Replacing p1j (θ
k
j → θk+1

j ) between two consecutive samples with the base assumption,

≥ (1− (1− ξj)
k)πj(θ

k+1
j ) + ξj(1− ξj)

k

∫
rj(θ

k
j | θ0j )πj(θk+1

j )dθkj

= (1− (1− ξj)
k)πj(θ

k+1
j ) + ξj(1− ξj)

kπj(θ
k+1
j )

= (1− (1− ξj)
k+1)πj(θ

k+1
j )

Therefore using proof by induction, we have that pMj (θ0j → θMj ) ≥ (1− (1− ξj)
M )πj(θ

M
j ).

Proof of Lemma 3.3. The transition kernel is given by

p1j (θ
i
j → θi+1

j ) = Aj(θ
i
j → θi+1

j ) · qj(θi+1
j |θij) + δ(θi+1

j − θij)

∫ (
1−Aj(θ

i
j → θ′j)

)
qj(θ

′
j |θij) dθ′j

≥ Aj(θ
i
j → θi+1

j ) · qj(θi+1
j |θij)

= Aj(θ
i
j → θi+1

j ) · pMj+1(θ
0
j+1 → θMj+1)

The sample, θi+1
j is proposed using the Mth sample from the j+1 chain, therefore is the same

as θMj+1. Thus, from Lemma A.1,

≥ Aj(θ
i
j → θi+1

j ) · (1− (1− ξj+1)
M ) · πj+1(θ

i+1
j )

= min

(
1,
πj(θ

i+1
j )

πj(θij)
·
πj+1(θ

i
j)

πj+1(θ
i+1
j )

)
· (1− (1− ξj+1)

M ) · πj+1(θ
i+1
j )

Let r(θ) =
πj+1(θ)
πj(θ)

. Then,

= min

(
1,

r(θij)

r(θi+1
j )

)
· (1− (1− ξj+1)

M ) · r(θi+1
j ) · πj(θi+1

j )

= (1− (1− ξj+1)
M ) ·min

(
r(θi+1

j ), r(θij)
)
· πj(θi+1

j )

≥ (1− (1− ξj+1)
M ) ·min

θ
(r(θ)) · πj(θi+1

j )

= ξj · πj(θi+1
j )



FLARE MCMC: FIDELITY-BASED LAYER-ADAPTIVE RECURSIVE PROPOSALS FOR MCMC 23

where ξj = (1− (1− ξj+1)
M ) ·min

θ

(
πj+1(θ)
πj(θ)

)
.

Appendix B. Optimal M proof.

Proof of Lemma 3.5. Since the ratio min
θ

(
πj+1(θ)
πj(θ)

)
is constant with respect to Mj , we

simplify the objective function to be maximized as:

f(Mj) =
1− (1− ξj+1)

Mj

bj +MjBj+1
, Mj ≥ 0, ξj+1 ∈ (0, 1), bj , Bj+1 > 0.

We define

c := 1− ξj+1 ∈ (0, 1), β :=
bj

Bj+1
, Υ := − log c > 0 and µ := β +

1

Υ
.

Then,

f(Mj) =
1− cMj

βBj+1 +MjBj+1
=

1− cMj

Bj+1(β +Mj)
.

Differentiating the objective function,

f ′(Mj) =
−cMj log c (β +Mj)− (1− cMj )

(β +Mj)2 ∗Bj+1
.

Setting the derivative to zero and using Υ = − log c,

−cMj log c (β +Mj) = 1− cMj =⇒ cMj
(
1 + Υ(β +Mj)

)
= 1.

Since cMj = elog(c
Mj ) = eMj log c = eMj(−Υ), we replace cMj = e−ΥMj to obtain(

1 + Υ(β +Mj)
)
e−ΥMj = 1.

By the definition of µ, we have 1 + Υ(β +Mj) = Υµ+ΥMj . Therefore,

(Υµ+ΥMj)e
−ΥMj = 1.

Let y = Υµ+ΥMj . Then, ΥMj = y −Υµ, substituting this gives

ye−(y−Υµ) = 1

ye−y = e−Υµ

−ye−y = −e−Υµ.
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Using the Lambert W function for branch k = −1,

(B.1) y = −W−1

(
− e−Υµ

)
.

Since ΥMj = y −Υµ, we get

Mj =
y

Υ
− µ = − 1

Υ
W−1

(
− e−Υµ

)
− µ.

Therefore, the maximizer for our objective function is

(B.2) M∗
j = − 1

Υ
W−1

(
− e−Υµ

)
− µ

where Υ = − log(1 − ξj+1), µ =
bj

Bj+1
+ 1

Υ and W−1 is −1 branch of the Lambert W

function.

Appendix C. Layer Tuning Ergodicity Proof.

Proof of Lemma 3.6. (a) Consider layer J − 1. Using Theorem 3.4,∥∥∥pMJ−1,γJ−1
(θ → ·)− ψJ−1(·)

∥∥∥ ≤ (1− ξJ−1)
M , ξJ−1 = (1− (1− ξJ)

M )min
θ

ψJ(θ)

ψJ−1(θ)

From the definition of layer tuning,

= (1− (1− ξJ)
M )min

θ

(π̃J(θ) + ωJ) · ζJ−1(ωJ−1)

(π̃J−1(θ) + ωJ−1) · ζJ(ωJ)

= (1− (1− ξJ)
M )min

θ

π̃J(θ) + ωJ

π̃J−1(θ) + ωJ−1

× Z + ωJ−1 · V
Z + ωJ · V

where ζ is the normalizing constant of the new distribution that depends on ω, Z is
the normalizing constant of the original distribution, and V is the volume of Θ. With
the bounds for ω from the assumption,

≥ (1− (1− ξJ)
M )min

θ

(
π̃J(θ) + ω

π̃J−1(θ) + ω

)(
Z + ω · V
Z + ω · V

)
≜ ξJ−1

By induction with base case at layer J ,

(C.1) ∀j,
∥∥∥pnj,γj (θ → ·)− ψj(·)

∥∥∥ ≤ (1− ξj)
n where ξj ≥ ξj .

We need to show that for all τ > 0. there exists n = n(τ) ∈ N such that∥∥∥pnj,γj (θ → ·)− ψj(·)
∥∥∥ ≤ τ
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for all θ ∈ Xj and γj ∈ Γj .
From Equation C.1, we want

(1− ξj)
n ≤ τ

n ≥ ln τ

ln(1− ξj)

Since ln(1− ξj) ≤ ln(1− ξj),

n ≥ ln τ

ln(1− ξj)
.

Thus, for all τ > 0, there exists n = max
τ

ln τ
ln(1−ξj)

such that
∥∥pnJ,γJ (θ → ·)− ψj(·)

∥∥ ≤ τ .

(b) At every step t, the change in γj maps to change in ωj+1. Diminishing adaptation
is guaranteed by a gradient descent algorithm with diminishing stepsize that updates
ωj+1 at each layer to minimize the Kullback-Leibler divergence between layers ψj and
ψj+1. At each step of the GD algorithm, ωj+1 is updated as ωt+1

j+1 = ωtj+1−ηi ∂
∂ωj+1

Hj+1.

To get diminishing adaptation, the update needs to converge as

lim
t→∞

∥∥∥∥ηt ∂

∂ωj+1
Hj+1

∥∥∥∥ ≈ 0.

Since we bound γj ↔ ωj+1 away from zero,

∂

∂ωj+1
Hj+1 =

1

π̃j+1(θ0j+1) + ωj+1
− 1

π̃j+1(θMj+1) + ωj+1

≤ 1

π̃j+1(θ0j+1) + ωj+1

≤ 1

π̃j+1(θ0j+1) + ω

≤ 1

ω

Therefore, the update is

lim
t→∞

∥∥∥∥ηt ∂

∂ωj+1
Hj+1

∥∥∥∥ ≤ lim
t→∞

∥∥∥∥ηt 1ω
∥∥∥∥

≤ 1

ω
lim
t→∞

ηt

If the stepsize, ηt asymptotes to 0, adapation decreases to 0 as t → ∞. Therefore

lim
t→∞

∥∥∥ωtj+1 − ωt+1
j+1

∥∥∥ = 0, and thus lim
t→∞

sup
θ

∥∥∥∥pj,γtj (θ → ·)− p
j,γt+1

j

(θ → ·)
∥∥∥∥ = 0.
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Appendix D. Uniform Smoothing Parameter. Plotted in Figure 9 is the evolution of our
tuning parameter ωj as a function of samples collected for one example chain of the doubly
nested method for the pendulum model. Each sample at j = 1 starts a chain of length
M = 5 at inner layer j = 2. The inner layer j = 2 uses the small angle approximation of the
pendulum as the fidelity. Since it is a poor approximation of the posterior as shown in Fig
2, we start with a relatively high value of ω. This helps the coarsest layer better explore the
high-probability regions. As shown, the tuning parameter ω converges close to zero after a
few samples in both the layers. We use a learning rate of 10−3 for both the layers.
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Figure 9: Evolution of ωj for doubly nested layers j = 1 and j = 2

Appendix E. Computational Infrastructure. Our experiments were performed on a ma-
chine with 4 Intel® Xeon® Silver 4214 CPUs running at 2.20GHz for our experiments (a
total of 48 cores). The machine has 250GB of memory, but memory was never a restriction
during our experiments.

All methods use multiproccessing, that is, each chain is run in parallel using a different
core. The time listed is across one run of a single chain; however, the effective sample size is
calculated across 10 different chains.

For the pendulum and hydrology models, likelihood calculations were carried out on a
single core. For the cosmology model, the likelihood calculations were carried out in parallel
across 20 cores. Therefore, for the cosmology experiments, saving a day’s worth of computation
time on the graphs corresponds to saving 20 days worth of core-hours.

Appendix F. Pairwise Plot for Cosmology Model. Plotted in Figure 10 is the pairwise
plot for all four parameters of the cosmology model. MCMC generates more samples in the
same period of time, yet these samples have not yet converged to the distribution and are still
scattered across the space, compared with the relatively compact FLARE MCMC samples.
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